

Directions:

- * Show your thought process (commonly said as "show your work") when solving each problem for full credit.
- * If you do not know how to solve a problem, try your best and/or explain in English what you would do.
- * Good luck!

Probler	n Score	e Points
1		10
2		10
3		10
4		10
5		10
6		10
		60

- Cgind

my work

or my thoughts while I work

Common mistakes made to avoid

$$f(x) = x^2 - x$$
 $g(x) = 3x^2 - x + 1$ $h(x) = \sin(x)$ $j(x) = 2^x$

Evaluate, expand, and/or simplify the following:

Evaluate, expand, and/or simply the following:
(a)
$$h\left(\frac{\pi}{6}\right) = S c n \left(\frac{\pi}{6}\right) = \boxed{\frac{1}{2}}$$

(b) $j(1) \cdot h(0) = 2^{1} \cdot s c n (0)$
 $= 2 \cdot 0$
 $= \boxed{0}$
(c) $\frac{f(x) \cdot g(x)}{f(x)}$
 $f(x) \cdot g(x) = (x^{-}x) (3x^{-}x + 1) for x^{-}(3x^{-}x + 1) + cx) (3x^{-}x + 1)$
 $f(x) \cdot g(x) = (x^{-}x) (3x^{-}x + 1) for x^{-}(3x^{-}x + 1) + cx) (3x^{-}x + 1)$
 $f(x) \cdot g(x) = (x^{-}x) (3x^{-}x + 1) for x^{-}(3x^{-}x + 1) + cx) (3x^{-}x + 1)$
 $f(x) \cdot g(x) = (x^{-}x) (3x^{-}x + 1) for x^{-}(3x^{-}x + 1) + cx) (3x^{-}x + 1)$
 $f(x) \cdot g(x) = (x^{-}x) (3x^{-}x + 1) for x^{-}(3x^{-}x + 1) + cx) (3x^{-}x + 1)$
 $f(x) \cdot g(x) = (x^{-}x) (3x^{-}x + 1) for x^{-}(x^{-}x) (3x^{-}x + 1) + cx) (3x^{-}x + 1)$
 $f(x) \cdot g(x) = (x^{-}x) (3x^{-}x + 1) for x^{-}(x^{-}x) (3x^{-}x + 1) + cx) (3x^{-}x + 1)$
 $f(x) \cdot g(x) = (x^{-}x) (3x^{-}x + 1) for x^{-}(x^{-}x) (3x^{-}x + 1) + cx) (3x^{-}x + 1)$
 $f(x) - f(x) = (x^{-}x) (x^{-}x$

$$GCF = h (2x + h - 1)^2$$

1. If

2. Short answer questions:

(a) Explain in English the intuition (not the definition) behind the symbols $\lim_{x\to a} f(x) = L$.

(b) True or false: We can simplify

$$\frac{3(x-2)^2(x+3) - 4(x+2)(x-3)^2}{5x(x-3)^2(x-2) - 4(x+3)}$$

by crossing out the
$$x + 3$$
.

(c) If
$$f(x) = x - x^2$$
, evaluate $f(x + h)$ and fully expand + simplify.

$$\int \left(\begin{array}{c} x + h \end{array} \right)^2 = \left(x + h \right) - \left(x + h \right)^2$$

Cumpon the notations:

$$f(x+h) = x + h - (x^{2} + 2xh + h^{2}) = \frac{f(x)}{x + h - x^{2} - 2xh - h^{2}}$$
(d) If $F(x) = \sin^{3}(x^{2})$ find three functions f, g, h where $f \circ g \circ h = F$.
lock how $x + h$
tock the place of
 x .

$$f(x) = x^{3}$$

$$\int f(x) = x^{3}$$

$$\int (f \circ g \circ h)(x) = f(g(h(x)))$$

$$= f(g(h(x)))$$

$$= f(g(x^{2})) \circ f(x) = f(x)$$

$$= f(\frac{g(x^{2})}{y}) \circ f(x) = f(x)$$

4. Perform the given instruction. Remember to use the relevant laws/properties and **fully** simplify.

(a) Expand and simplify:
$$\frac{3(x+h)^2 - 1 - (3x^2 - 1)}{h}$$

(a) Expand and simplify: $\frac{3(x+h)^2 - 1 - (3x^2 - 1)}{h}$
(b) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$
(c) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h} - \sqrt{x}}{h}$

$$\frac{2}{x(r)}$$
Compared finalises

$$\frac{2}{x(r)}$$

5. Determine whether the following sequences is convergent or divergent. If it is convergent, find what the limit converges to.

$$a_n = \frac{3^{n+2}}{5^n} = \frac{3^2 \cdot 3^n}{5^n} = 3^2 \cdot \frac{3^n}{5^n} = 9 \cdot \left(\frac{3}{5^n}\right)^n \leftarrow LoE (1) \text{ and } (5)$$

So

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} 9 \cdot \left(\frac{3}{5}\right)^n$$

$$= 9 \cdot \lim_{n \to \infty} \left(\frac{3}{5}\right)^n \qquad \text{Limit Low 3}$$

$$= 9 \cdot 0 \qquad \lim_{n \to \infty} r^n = 0 \quad \text{if } \quad \text{Oursely}$$

$$= 10$$

6. Solve the following equations for *x*:

(a)
$$e^{2x} - 3e^{x} + 2 = 0$$

 $(e^{x})^{2} - 3e^{x} + 2 = 0$ Lows of Expanded 1
Let $g = e^{x}$. Substituting:
 $y^{2} - 3g + 2 = 0$ generation
 $y^{2} - 3g + 2 = 0$ generation
 $y - 2 = 0$ $y - 1 = 0$
 $y - 2 = 0$ $y - 1 = 0$
 $y = 2$ $y = 1$
Now bookschedicke.
 $e^{x} = 2$ $e^{x} = 1$ (iscladed expremation
 $\ln(e^{x}) = \ln(2)$ $\ln(e^{x}) = \ln(1)$
 $\boxed{x = \ln(2)}$ $x = \ln(1) = 0$

(b)
$$\ln(3x-10) = 2$$

iscluted logarithm
invise diactin
property
 $3x - 10 = e^{2}$
 $\frac{3x = e^{2} + 10}{\sqrt{3}}$