

Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

Problem	Score
1	Points
2	10
3	10
4	10
5	10

my work

1. If

$$
f(x)=x^{2}-x \quad g(x)=3 x^{2}-x+1 \quad h(x)=\sin (x) \quad j(x)=2^{x}
$$

Evaluate, expand, and/or simplify the following:
(a) $h\left(\frac{\pi}{6}\right)=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$

(b)

$$
\begin{aligned}
j(1) \cdot h(0) & =2^{\prime} \cdot \sin (0) \\
& =2 \cdot 0 \\
& =0
\end{aligned}
$$

(c) $f(x), g(x)$
two three Dunt forget parenthesis when multiplying into ≥ 2 terms!
(d) $f(x+h)-f(x)$
dist law

$$
\xlongequal{=}=3 x^{4}-x^{3}+x^{2}-3 x^{3}+x^{2}-x
$$

Since $f(x)=x^{2}-x$

$$
=3 x^{4}-4 x^{3}+2 x^{2}-x
$$

$$
\begin{aligned}
& \text { look! } x \text { th replaces the " } x \text { " visually! Now do it! } \\
& f\left(\frac{x+h}{x+h}\right)-f(x)=\frac{(x+h)^{2}-(x+h)}{f(x+h)}-\underbrace{\left(x^{2}-x\right)}_{f(x)} \text { (common mistake: } \quad \begin{array}{c}
\text { forgot the parnthas is! }
\end{array} \\
& \underset{\text { list law }}{\text { expand, }} x^{2}+2 x h+h^{2}-x-h-x^{2}+x \\
& =2 \times h+h^{2}-h \\
& \text { CF }=h(2 x+h-1)^{2}
\end{aligned}
$$

2. Short answer questions:
(a) Explain in English the intuition (not the definition) behind the symbols $\lim _{x \rightarrow a} f(x)=L$.

midterm I.
$f(x)$ is the height of the function at an x-value.
So as the x-values approach a but newer a itself, the heights $f(x)$ will get closer and closer to the key th of L.
(b) True or false: We can simplify

$$
\frac{\sqrt{3(x-2)^{2}(x+3)}-4(x+2)(x-3)^{2}}{5 x(x-3)^{2}(x-2)-4(x+3)}
$$

by crossing out the $x+3$.
No. $(x+3)$ is not a factor in the global context of both the numerater and denominator. The context in which it's a factor is underlined in purple above.
(c) If $f(x)=x-x^{2}$, evaluate $f(x+h)$ and fully expand + simplify.

$$
f(x+h)=(x+h)-(x+h)^{2}
$$

Compare
$f(x+n)$

$$
f(x)
$$

loole how x th tuck the place of x.

$$
=x+h-\left(x^{2}+2 x h+h^{2}\right) \stackrel{\text { dist }}{=} x+h-x^{2}-2 x h-h^{2}
$$

(d) If $F(x)=\sin ^{3}\left(x^{2}\right)$ find three functions f, g, h where $f \circ g \circ h=F$.

$$
\begin{aligned}
& \begin{array}{l}
f(x)=x^{3} \\
g(x)=\sin (x) \\
h(x)=x^{2}
\end{array}
\end{aligned}
$$

$C_{\text {commen mistane }} \# 1$: plogigh in 2 in $-x^{2}+1$ is ne 2^{2} netion

$$
\begin{aligned}
-2^{2}+1 & =(-1) \cdot 2^{2}+1 \quad \text { law } \# 1 \\
& =-4+1
\end{aligned}
$$

3. Suppose

$$
f(x)= \begin{cases}x & x<1 \\ -x^{2}+1 & x \geq 1\end{cases}
$$

(a) What is $f(1)$?

$$
f(1)=-1^{2}+1 \underset{\text { law ! }}{\text { negatien }}(-1) \cdot 1^{2}+1=-1+1
$$

Comonn mistake \# 2 :
(b) Sketch a graph of $f(x)$.

x	$f(x)$
-1	-1
0	0
1	$-1^{2}+1=0$
2	$-2^{2}+1=-3$

4. Perform the given instruction. Remember to use the relevant laws/properties and fully simplify.
(a) Expand and simplify: $\frac{\sqrt{3(x+h)^{2}}-1-\left(3 x^{2}-1\right)}{h}$

$$
3(x+h)^{2} \neq(3 x+3 h)
$$

because $3(x+h)^{2}=3 \cdot(x+h) \cdot(x+h)$
You con only distribute the 3 to
3 multiplies into 3 terms. one factor of $(x+h)$.

$$
\begin{aligned}
\frac{3(x+h)^{2}-1-\left(3 x^{2}-1\right)}{h} & \stackrel{(A+B)^{2}}{=} \\
& \frac{3\left(x^{2}+2 x h+h^{2}\right)^{2}-1-3 x^{2}+1}{h} \\
& =\frac{3 x h+3 h^{2}}{h} \stackrel{6 c c}{=} \frac{h(6 x+3 h)}{h} \stackrel{3 h^{2}-3 x^{2}}{=} \\
& 6 x+3 h
\end{aligned}
$$

(b) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h}-\sqrt{x}}{h}$

We begin: (c) Simplify: $\frac{\frac{2}{x^{2}+x}-\frac{3}{\sqrt{x}}}{\sqrt{x}}$ LCD of $\frac{2}{x(x+1)}, \frac{3}{\sqrt{x}}, \frac{1}{x}$ is $x \sqrt{x}(x+1)$

$$
\frac{\frac{2}{x^{2}+x}-\frac{3}{\sqrt{x}}}{\sqrt{x}+\frac{1}{x}} \cdot \frac{x \sqrt{x}(x+1)}{x \sqrt{x}(x+1)} \frac{\sqrt{x}+\frac{1}{x}}{\text { taw lever 1. }} \frac{\left(\frac{2}{x(x+1)}-\frac{3}{\sqrt{x}}\right) x \sqrt{x}(x+1)}{\left(\sqrt{x}+\frac{1}{x}\right) \times \sqrt{x}(x+1)}
$$

distributive $\frac{\frac{2}{x(x+1)} \cdot x \sqrt{x}(x+1)-\frac{3}{\sqrt{x}} \times \sqrt{x}(x+1)}{x(\sqrt{x})^{2}(x+1)+\frac{1}{x} x \sqrt{x}(x+1)}$

$$
\begin{aligned}
& \underset{\text { I, then } 5}{\text { fraction law }}=\frac{2 \sqrt{x}-3 x(x+1)}{x^{2}(x+1)+\sqrt{x}(x+1)} \\
& 2 \sqrt{x}-2 x^{2} \\
&=x^{\frac{1}{2}}+x^{\frac{1}{2}} \\
&=\sqrt{x^{3}}+\sqrt{x}
\end{aligned}
$$

$$
=\frac{2 \sqrt{x}-3 x^{2}-3 x}{x^{3}+x^{2}+\sqrt{x^{3}}+\sqrt{x}}
$$

K you coll have also
(d) Expand: $\left(x^{3}+6\right)(2 x+1)-\left(x^{2}+x-2\right)\left(3 x^{2}\right)$ factored out $x^{\frac{1}{2}}$ from numerator \rightarrow Convert to terms, no parenthesis. and denominator, then cancelled.

5. Determine whether the following sequences is convergent or divergent. If it is convergent, find what the limit converges to.
(a) $a_{n}=\frac{5^{n}}{5+\underbrace{5^{n}}} \quad \begin{aligned} & \text { logiest "infinite" tron in dicuminobere } \\ & \text { Divide both numuatar and dinumination by 5? }\end{aligned}$
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{5^{n}}{5+5^{n}}=\lim _{n \rightarrow \infty} \frac{\frac{5^{n}}{5^{n}}}{\frac{5+5^{n}}{5^{n}}} \downarrow$ compound formation, deal with numeaterer and

$$
=\lim _{n \rightarrow \infty} \frac{1}{\frac{5}{5^{n}}+\frac{5^{n}}{5^{n}}} \quad \text { foo law } 3
$$

$$
=\lim _{n \rightarrow \infty} \frac{1}{5 \cdot \frac{1}{5^{n}}+1}
$$

$$
=\frac{1}{1}
$$

$$
=\boxed{I}
$$

(b) $a_{n}=\frac{3^{n+2}}{5^{n}}<$ try to create r^{n} so you can use the fact

$$
a_{n}=\frac{3^{n+2}}{5^{n}}=\frac{3^{2} \cdot 3^{n}}{5^{n}}=3^{2} \cdot \frac{3^{n}}{5^{n}}=9 \cdot\left(\frac{3}{5}\right)^{n} \leftarrow \operatorname{LoE} \text { (1) and (5) }
$$

So

$$
\begin{aligned}
& \text { So } \\
& \begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} 9 \cdot\left(\frac{3}{5}\right)^{n} \\
& =9 \cdot \lim _{n \rightarrow \infty}\left(\frac{3}{5}\right)^{n} \quad \text { Limit Law } 3 \\
& =9 \cdot 0 \quad \lim _{n \rightarrow \infty} r^{n}=0 \quad \text { if } \quad 0<r<1
\end{aligned}
\end{aligned}
$$

$$
=0
$$

6. Solve the following equations for x :
(a) $e^{2 x}-3 e^{x}+2=0$

$$
\left(e^{x}\right)^{2}-3 e^{x}+2=0 \quad \text { Laws of Expomens } 1
$$

Let $y=e^{x}$. Substiduting:

$$
\begin{gathered}
y^{2}-3 y+2=0 \\
y-2=0 \quad \underbrace{2}+2)(y-1)=0 \\
y=2 \quad y-1=0 \\
y=1
\end{gathered}
$$

$$
a=1, b=-3, c=2 \quad(y,-2) \cdot(y-1)=0
$$

Nas bocksabstitute.
$e^{x}=2 \quad e^{x}=1 \quad$ isclated exponintial

$$
\begin{aligned}
& \ln \left(e^{x}\right)=\ln (2) \quad \ln \left(e^{x}\right)=\ln (1) \\
& x=\ln (2) \quad x=\ln (1)=0
\end{aligned}
$$

(b) $\ln (3 x-10)=2$
isclutal logavithm
inverse fuemtina procety

$$
\left\{\begin{array}{r}
e^{\ln (3 x-10)}=e^{2} \\
3 x-10=e^{2} \\
3 x=e^{2}+10 \\
x=\frac{e^{2}+10}{3}
\end{array}\right.
$$

